Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 462
Filtrar
1.
Redox Biol ; 72: 103156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640584

RESUMEN

Regulation of the oxidative stress response is crucial for the management and prognosis of traumatic brain injury (TBI). The copper chaperone Antioxidant 1 (Atox1) plays a crucial role in regulating intracellular copper ion balance and impacting the antioxidant capacity of mitochondria, as well as the oxidative stress state of cells. However, it remains unknown whether Atox1 is involved in modulating oxidative stress following TBI. Here, we investigated the regulatory role of Atox1 in oxidative stress on neurons both in vivo and in vitro, and elucidated the underlying mechanism through culturing hippocampal HT-22 cells with Atox1 mutation. The expression of Atox1 was significantly diminished following TBI, while mice with overexpressed Atox1 exhibited a more preserved hippocampal structure and reduced levels of oxidative stress post-TBI. Furthermore, the mice displayed notable impairments in learning and memory functions after TBI, which were ameliorated by the overexpression of Atox1. In the stretch injury model of HT-22 cells, overexpression of Atox1 mitigated oxidative stress by preserving the normal morphology and network connectivity of mitochondria, as well as facilitating the elimination of damaged mitochondria. Mechanistically, co-immunoprecipitation and mass spectrometry revealed the binding of Atox1 to DJ-1. Knockdown of DJ-1 in HT-22 cells significantly impaired the antioxidant capacity of Atox1. Mutations in the copper-binding motif or sequestration of free copper led to a substantial decrease in the interaction between Atox1 and DJ-1, with overexpression of DJ-1 failing to restore the antioxidant capacity of Atox1 mutants. The findings suggest that DJ-1 mediates the ability of Atox1 to withstand oxidative stress. And targeting Atox1 could be a potential therapeutic approach for addressing post-traumatic neurological dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteínas Transportadoras de Cobre , Hipocampo , Mitofagia , Neuronas , Estrés Oxidativo , Proteína Desglicasa DJ-1 , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/genética , Ratones , Hipocampo/metabolismo , Hipocampo/patología , Neuronas/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/genética , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Transportadoras de Cobre/genética , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Masculino , Antioxidantes/metabolismo , Línea Celular , Humanos
2.
Chem Biol Interact ; 393: 110943, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38462020

RESUMEN

Acute kidney injury (AKI) is a common complication of cisplatin chemotherapy, which greatly limits its clinical effect and application. This study explored the function of solute Carrier Family 31 Member 1 (SLC31A1) in cisplatin-induced AKI and its possible mechanism. Mice and HK-2 cells were exposed to cisplatin to establish the in vivo and in vitro AKI models. Cell viability was detected by CCK-8. Mitochondrial and oxidative damage was determined by Mito-Tracker Green staining, mtROS level, ATP production, mitochondrial membrane potential, MDA content and CAT activity. AKI was evaluated by renal function and histopathological changes. Apoptosis was detected by TUNEL and caspase-3 expression. Molecule expression was measured by RT-qPCR, Western blotting, and immunohistochemistry. Molecular mechanism was studied by luciferase reporter assay and ChIP. SLC31A1 level was predominantly increased by cisplatin exposure in AKI models. Notably, copper ion (Cu+) level was enhanced by cisplatin challenge. Moreover, Cu+ supplementation intensified cisplatin-induced cell death, mitochondrial dysfunction, and oxidative stress in HK-2 cells, indicating the involvement of cuproptosis in cisplatin-induced AKI, whereas these changes were partially counteracted by SLC31A1 knockdown. E74 like ETS transcription factor 3 (ELF3) could directly bind to SLC31A1 promoter and promote its transcription. ELF3 was up-regulated and positively correlated with SLC31A1 expression upon cisplatin-induced AKI. SLC31A1 silencing restored renal function, alleviated mitochondrial dysfunction, and apoptosis in cisplatin-induced AKI mice. ELF3 transcriptionally activated SLC31A1 to trigger cuproptosis that drove cisplatin-induced AKI through mitochondrial dysfunction, indicating that SLC31A1 might be a promising therapeutic target to mitigate AKI during cisplatin chemotherapy.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Cobre , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Apoptosis , Cisplatino/efectos adversos , Cobre/metabolismo , Proteínas Transportadoras de Cobre , Enfermedades Mitocondriales/complicaciones
3.
Nihon Yakurigaku Zasshi ; 159(2): 78-82, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38432923

RESUMEN

Clioquinol was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. We previously performed a global analysis of human neuroblastoma cells using DNA chips and demonstrated that clioquinol induced 1) DNA double-strand breaks and subsequent activation of ATM/p53 signaling; 2) the expression of VGF, the precursor of neuropeptides involved in pain reactions, by inducing c-Fos; 3) the expression of interleukin-8, which is reported to be involved in intestinal inflammation, optic neuropathy, and neuropathic pain, by down-regulating GATA-2 and GATA-3. We also demonstrated that clioquinol induced zinc influx and oxidation of the copper chaperone ATOX1, leading to the impairment of the functional maturation of a copper-dependent enzyme dopamine-ß-hydroxylase and the inhibition of noradrenaline biosynthesis. Thus, clioquinol-induced neurotoxicity in SMON seems to be mediated by multiple pathways.


Asunto(s)
Clioquinol , Enfermedades del Nervio Óptico , Humanos , Clioquinol/efectos adversos , Cobre , Médula Espinal , Japón , Proteínas Transportadoras de Cobre , Chaperonas Moleculares
4.
Head Neck ; 46(3): 636-650, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164660

RESUMEN

BACKGROUND: Cisplatin (CDDP) plays a central role in chemotherapy for head and neck squamous cell carcinoma (HNSCC), but drug resistance in HNSCC chemotherapy remains a problem, and the mechanism of CDDP resistance is unclear. We investigated CDDP-resistance mechanisms mediated by extracellular vesicles (EVs) and ATPase copper transporting beta (ATP7B) in HNSCC. METHODS: We established CDDP-resistant sublines of HNSCC cells and verified their ATP7B expression. We used an EV secretion inhibitor (GW4869) and ATP7B short hairpin (sh)RNA transfection to examine the correlation between EV secretion and ATP7B expression. RESULTS: The CDDP-resistant HNSCC sublines showed decreased CDDP sensitivity and increased ATP7B expression. GW4869 suppressed ATP7B expression, and ATP7B shRNA transfection suppressed EV secretion. The suppressions of EV secretion and ATP7B expression both enhanced CDDP's cell-killing effect. CONCLUSIONS: EVs were involved in the ATP7B-mediated mechanism underlying CDDP resistance. Further clarification of the EV-induced CDDP-resistance mechanism may lead to novel therapeutic strategies for HNSCC.


Asunto(s)
Compuestos de Anilina , Antineoplásicos , Compuestos de Bencilideno , Vesículas Extracelulares , Neoplasias de Cabeza y Cuello , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Transportadoras de Cobre , Resistencia a Antineoplásicos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Cobre/metabolismo , Cobre/farmacología
5.
Int Arch Allergy Immunol ; 185(3): 201-211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38071964

RESUMEN

INTRODUCTION: Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of allergic rhinitis (AR). The current investigation is focused on elucidating the functional impact of a specific lncRNA, FGD5 antisense RNA 1 (FGD5-AS1), on the development and progression of AR through its interaction with miR-223-3p. METHODS: An experimental framework for AR was constructed in both cellular and animal models. Quantitative assessment of FGD5-AS1, miR-223-3p, and COX11 mRNA expression was conducted using real-time quantitative reverse transcription PCR. The expression of inflammatory factors, immunoglobulin E, LTC4, and ECP, was examined using ELISA. Apoptosis in human nasal epithelial cells was assessed by the flow cytometry method. The protein expression of COX11 was examined using Western blotting. Nasal mucosal function was further evaluated by hematoxylin and eosin staining. Furthermore, bioinformatics evaluations, dual-luciferase reporter assays, and a series of experimental procedures unveiled a putative competitive endogenous RNA regulatory mechanism. RESULTS: We found the expression of lncRNA FGD5-AS1 was decreased in AR. In vitro lncRNA FGD5-AS1 attenuated the production of inflammatory cytokines in nasal epithelial cells. Furthermore, elevated FGD5-AS1 expression significantly alleviated AR symptoms by reducing nasal epithelial apoptosis and inflammation. MiR-223-3p was identified as a direct target of FGD5-AS1. Moreover, miRNA-223-3p directly downregulated the expression of COX11 mRNA. Subsequent experiments confirmed that FGD5-AS1 regulated AR through the miR-223-3p/COX11 axis, thereby inhibiting inflammation. CONCLUSION: The FGD5-AS1/miR-223-3p/COX11 axis plays a pivotal role in the pathogenesis of AR, suggesting that FGD5-AS1 could serve as a potential diagnostic biomarker and therapeutic target for AR.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Rinitis Alérgica , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Inflamación/genética , Rinitis Alérgica/genética , ARN Mensajero , Proliferación Celular , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
6.
Int J Toxicol ; 43(2): 134-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37859596

RESUMEN

Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 µM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting ß (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.


Asunto(s)
Cisplatino , Proteínas Transportadoras de Cobre , Chaperonas Moleculares , Animales , Ratas , Ciclo Celular , Cisplatino/toxicidad , Cóclea , Cobre/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Sincalida/farmacología , Proteínas Transportadoras de Cobre/metabolismo
7.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068960

RESUMEN

Genetic defects in the nuclear encoded subunits and assembly factors of cytochrome c oxidase (mitochondrial complex IV) are very rare and are associated with a wide variety of phenotypes. Biallelic pathogenic variants in the COX11 protein were previously identified in two unrelated children with infantile-onset mitochondrial encephalopathies. Through comprehensive clinical, genetic and functional analyses, here we report on a new patient harboring novel heterozygous variants in COX11, presenting with Leigh-like features, and provide additional experimental evidence for a direct correlation between COX11 protein expression and sensitivity to oxidative stress. To sort out the contribution of the single mutations to the phenotype, we employed a multi-faceted approach using Saccharomyces cerevisiae as a genetically manipulable system, and in silico structure-based analysis of human COX11. Our results reveal differential effects of the two novel COX11 mutations on yeast growth, respiration, and cellular redox status, as well as their potential impact on human protein stability and function. Strikingly, the functional deficits observed in patient fibroblasts are recapitulated in yeast models, validating the conservation of COX11's role in mitochondrial integrity across evolutionarily distant organisms. This study not only expands the mutational landscape of COX11-associated mitochondrial disorders but also underscores the continued translational relevance of yeast models in dissecting complex molecular pathways.


Asunto(s)
Enfermedades Mitocondriales , Proteínas de Saccharomyces cerevisiae , Niño , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Enfermedades Mitocondriales/genética , Fibroblastos/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo
8.
PLoS One ; 18(12): e0295944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127999

RESUMEN

The p53 protein is crucial for regulating cell survival and apoptosis in response to DNA damage. However, its influence on therapy effectiveness is controversial: when DNA damage is high p53 directs cells toward apoptosis, while under moderate genotoxic stress it saves the cells from death and promote DNA repair. Furthermore, these processes are influenced by the metabolism of transition metals, particularly copper since they serve as cofactors for critical enzymes. The metallochaperone Atox1 is under intensive study in this context because it serves as transcription factor allegedly mediating described effects of copper. Investigating the interaction between p53 and Atox1 could provide insights into tumor cell survival and potential therapeutic applications in oncology. This study explores the relationship between p53 and Atox1 in HCT116 and A549 cell lines with wild type and knockout TP53. The study found an inverse correlation between Atox1 and p53 at the transcriptional and translational levels in response to genotoxic stress. Atox1 expression decreased with increased p53 activity, while cells with inactive p53 had significantly higher levels of Atox1. Suppression of both genes increased apoptosis, while suppression of the ATOX1 gene prevented apoptosis even under the treatment with chemotherapeutic drugs. The findings suggest that Atox1 may act as one of key elements in promotion of cell cycle under DNA-damaging conditions, while p53 works as an antagonist by inhibiting Atox1. Understanding of this relationship could help identify potential targets in cell signaling pathways to enhance the effectiveness of combined antitumor therapy, especially in tumors with mutant or inactive p53.


Asunto(s)
Cobre , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Cobre/metabolismo , Proteínas Transportadoras de Cobre , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Daño del ADN
9.
Front Cell Infect Microbiol ; 13: 1267931, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106478

RESUMEN

Copper, a vital element in various physiological processes, is transported from the gastrointestinal tract to tissues and cells through diverse copper transporters. Among these transporters, ATP7A and ATP7B play significant roles in regulating systemic copper metabolism and exhibit precise regulation in their intracellular trafficking. These transporters undergo dynamic shuttling between the trans-Golgi network (TGN) and the plasma membrane via the endocytic recycling mechanism, which involves the retromer and other associated factors. Interestingly, the antimicrobial attribute of copper implies a potential connection between microbial infection and copper metabolism. Several microbes, including Salmonella enterica, Cryptococcus, Influenza A virus (IAV) and Zika virus (ZIKV) have been observed to impact the regulatory mechanisms of ATP7A/B, either directly or indirectly, as a means of survival. This review summarizes the key features and trafficking mechanisms of the copper transporters ATP7A/B, and examines the intricate interplay between microbes and copper metabolism. Ultimately, it highlights how microbes can perturb copper homeostasis through interactions with host factors, offering valuable insights into the mechanistic aspects of host-microbe interactions.


Asunto(s)
Proteínas de Transporte de Catión , Infección por el Virus Zika , Virus Zika , Humanos , Cobre/metabolismo , Adenosina Trifosfatasas , Proteínas de Transporte de Catión/metabolismo , Proteínas Transportadoras de Cobre , ATPasas Transportadoras de Cobre/metabolismo , Fragmentos de Péptidos/metabolismo
10.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958561

RESUMEN

The copper transporter (COPT/Ctr) gene family plays a critical part in maintaining the balance of the metal, and many diverse species depend on COPT to move copper (Cu) across the cell membrane. In Arabidopsis thaliana, Oryza sativa, Medicago sativa, Zea mays, Populus trichocarpa, Vitis vinifera, and Solanum lycopersicum, a genome-wide study of the COPT protein family was performed. To understand the major roles of the COPT gene family in Kandelia obovata (Ko), a genome-wide study identified four COPT genes in the Kandelia obovata genome for the first time. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and Cu were all investigated in this research. Structural and sequence investigations show that most KoCOPTs have three transmembrane domains (TMDs). According to phylogenetic research, these KoCOPTs might be divided into two subgroups, just like Populus trichocarpa. KoCOPT gene segmental duplications and positive selection pressure were discovered by universal analysis. According to gene structure and motif analysis, most KoCOPT genes showed consistent exon-intron and motif organization within the same group. In addition, we found five hormones and four stress- and seven light-responsive cis-elements in the KoCOPTs promoters. The expression studies revealed that all four genes changed their expression levels in response to copper (CuCl2) treatments. In summary, our study offers a thorough overview of the Kandelia obovata COPT gene family's expression pattern and functional diversity, making it easier to characterize each KoCOPT gene's function in the future.


Asunto(s)
Genes de Plantas , Rhizophoraceae , Cobre/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética
11.
Medicine (Baltimore) ; 102(43): e35503, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37904461

RESUMEN

Cuproptosis has been reported to affect a variety of diseases. Therefore, we aimed to examine the role of cuproptosis-related genes in active ulcerative colitis (UC). We acquired 2 datasets of active UC from the Gene Expression Omnibus database and created immune cell infiltrations to research immune cell dysregulation. Based on the cuproptosis gene set and differentially expressed genes (DEGs), we identified the differentially expressed genes of cuproptosis (CuDEGs). We then used 2 machine learning methods to screen hub CuDEGs. Subsequently, we performed validation on additional datasets and investigated the relationship between hub CuDEGs and drug treatments. Thirty-five controls with inactive UC and 90 patients with active UC were obtained from the training sets. A total of 9157 DEGs and 27 CuDEGs were identified, respectively. Immune cell infiltration analysis revealed that patients with active UC exhibited higher levels of activated dendritic cells and neutrophils as well as lower levels of CD8+ T cells, regulatory T cells (Tregs), and macrophage M2. A six-gene cuproptosis signature was identified using machine learning algorithms. We further validated that the 6 hub CuDEGs showed a strong correlation with active UC and acted as cuproptosis-related biomarkers of active UC. Moreover, the expression of ATOX1 was downregulated, and SUMF1, MT1G, ATP7B, FDX1, and LIAS expression was upregulated in the colonic mucosa of active UC patients who responded to golimumab or vedolizumab therapy. With the exception of ATP7B, the expression patterns of hub CuDEGs before and after infliximab treatment of patients with active UC were similar to those of golimumab and vedolizumab. Cuproptosis and active UC have a complex relationship, as illustrated in our study. ATOX1, SUMF1, MT1G, ATP7B, FDX1, and LIAS are cuproptosis-related hub genes of active UC. Our study opens new avenues for investigating UC progression and developing novel therapeutic potential targets for the disease.


Asunto(s)
Colitis Ulcerosa , Humanos , Algoritmos , Linfocitos T CD8-positivos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Proteínas Transportadoras de Cobre , Infliximab/uso terapéutico , Chaperonas Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Apoptosis , Cobre
12.
Nat Metab ; 5(11): 1931-1952, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813994

RESUMEN

Reversible acetylation of mitochondrial proteins is a regulatory mechanism central to adaptive metabolic responses. Yet, how such functionally relevant protein acetylation is achieved remains unexplored. Here we reveal an unprecedented role of the MYST family lysine acetyltransferase MOF in energy metabolism via mitochondrial protein acetylation. Loss of MOF-KANSL complex members leads to mitochondrial defects including fragmentation, reduced cristae density and impaired mitochondrial electron transport chain complex IV integrity in primary mouse embryonic fibroblasts. We demonstrate COX17, a complex IV assembly factor, as a bona fide acetylation target of MOF. Loss of COX17 or expression of its non-acetylatable mutant phenocopies the mitochondrial defects observed upon MOF depletion. The acetylation-mimetic COX17 rescues these defects and maintains complex IV activity even in the absence of MOF, suggesting an activatory role of mitochondrial electron transport chain protein acetylation. Fibroblasts from patients with MOF syndrome who have intellectual disability also revealed respiratory defects that could be restored by alternative oxidase, acetylation-mimetic COX17 or mitochondrially targeted MOF. Overall, our findings highlight the critical role of MOF-KANSL complex in mitochondrial physiology and provide new insights into MOF syndrome.


Asunto(s)
Fibroblastos , Mitocondrias , Humanos , Animales , Ratones , Acetilación , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Transportadoras de Cobre/metabolismo
13.
J Inorg Biochem ; 247: 112324, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37481825

RESUMEN

Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).


Asunto(s)
Antineoplásicos , Proteínas de Transporte de Catión , Neoplasias Ováricas , Humanos , Femenino , Proteínas Transportadoras de Cobre , Proteínas de Transporte de Catión/metabolismo , Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Transporte Biológico , Cobre/metabolismo , Apoptosis
14.
Mol Pharm ; 20(8): 4138-4152, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37358225

RESUMEN

Lipid nanoparticle (LNP) delivery systems are widely used in the delivery of small-molecule drugs and nucleic acids. In this study, we prepared LNP-miR-155 by lipid nanomaterial technology and investigated the effects of LNP-miR-155 on ß-catenin/transcription factor 4 (TCF4)/solute carrier family 31 member 1/copper transporter 1 (SLC31A1/CTR1) signaling and copper transport in colorectal cancer. For this, we used an LNP-miR-155 cy5 inhibitor and LNP-miR-155 cy5 mimics for the transfection of HT-29/SW480 cells. The transfection efficiency and uptake efficiency were detected by immunofluorescence. Relevant cell assays confirmed that the LNP-miR-155 cy5 inhibitor mediates the regulation of copper transport through the ß-catenin/TCF4/SLC31A1 axis. The LNP-miR-155 cy5 inhibitor reduced cell proliferation, migration, and colony formation and promoted cell apoptosis. We also confirmed that miR-155 downregulates HMG box-containing protein 1 (HBP1) and adenomatous polyposis coli (APC) in cells and activates the function of ß-catenin/TCF4 signaling. In addition, we found that the copper transporter, SLC31A1, is highly expressed in colorectal cancer cells. Furthermore, we also found that the complex ß-catenin/TCF4 promotes the transcription of SLC31A1 by binding to its promoter region, which sustains the transport of copper from the extracellular region to the intracellular region and increases the activities of Cu2+-ATPase and superoxide dismutase (SOD). In summary, the LNP-miR-155 cy5 inhibitor regulates ß-catenin/TCF4 by downregulating SLC31A1-mediated copper transport and intracellular copper homeostasis.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , beta Catenina/metabolismo , Factor de Transcripción 4/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Cobre/farmacología , Cobre/metabolismo , Neoplasias Colorrectales/genética , MicroARNs/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Transportador de Cobre 1/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas Represoras/metabolismo
15.
Vet Comp Oncol ; 21(3): 559-564, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37148200

RESUMEN

Twenty-four dogs with OS underwent limb amputation. Serum, OS tumour, and normal bone were harvested at time of surgery. RNA was extracted and gene expression was performed using quantitative polymerase chain reaction (qPCR). Tissue and blood copper concentrations were also determined with spectrophotometry. Compared to bone, tumour samples had significantly higher expressions of antioxidant 1 copper chaperone (ATOX1, p = .0003). OS tumour copper levels were significantly higher than that of serum (p < .010) and bone (p = .038). Similar to our previous observations in mouse and human OS, dog OS demonstrates overexpression of genes that regulate copper metabolism (ATOX1), and subsequent copper levels. Dogs with OS may provide a robust comparative oncology platform for the further study of these factors, as well as potential pharmacologic interventions.


Asunto(s)
Neoplasias Óseas , Enfermedades de los Perros , Osteosarcoma , Humanos , Perros , Animales , Ratones , Cobre , Antioxidantes , Osteosarcoma/genética , Osteosarcoma/veterinaria , Osteosarcoma/metabolismo , Enfermedades de los Perros/genética , Enfermedades de los Perros/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria , Expresión Génica , Proteínas Transportadoras de Cobre/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
16.
Cell Rep ; 42(5): 112417, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37074913

RESUMEN

The P-type ATPase ATP7B exports cytosolic copper and plays an essential role in the regulation of cellular copper homeostasis. Mutants of ATP7B cause Wilson disease (WD), an autosomal recessive disorder of copper metabolism. Here, we present cryoelectron microscopy (cryo-EM) structures of human ATP7B in the E1 state in the apo, the putative copper-bound, and the putative cisplatin-bound forms. In ATP7B, the N-terminal sixth metal-binding domain (MBD6) binds at the cytosolic copper entry site of the transmembrane domain (TMD), facilitating the delivery of copper from the MBD6 to the TMD. The sulfur-containing residues in the TMD of ATP7B mark the copper transport pathway. By comparing structures of the E1 state human ATP7B and E2-Pi state frog ATP7B, we propose the ATP-driving copper transport model of ATP7B. These structures not only advance our understanding of the mechanisms of ATP7B-mediated copper export but can also guide the development of therapeutics for the treatment of WD.


Asunto(s)
Proteínas de Transporte de Catión , Degeneración Hepatolenticular , Humanos , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Proteínas Transportadoras de Cobre , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Microscopía por Crioelectrón , Degeneración Hepatolenticular/metabolismo
17.
Int J Biol Macromol ; 241: 124404, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37054854

RESUMEN

Copper acquisition and subsequent delivery to target proteins are essential for many biological processes. However, the cellular levels of this trace element must be controlled because of its potential toxicity. The COPT1 protein rich in potential metal-binding amino acids functions in high affinity copper uptake at the plasma membrane of Arabidopsis cells. The functional role of these putative metal-binding residues is largely unknown. Through truncations and site-directed mutagenesis, we identified His43, a single residue within the extracellular N-terminal domain as absolutely critical for copper uptake of COPT1. Substitution of this residue with leucine, methionine or cysteine almost inactivated transport function of COPT1, implying that His43 fails to serves as a copper ligand in the regulation of COPT1 activity. Deletion of all extracellular N-terminal metal-binding residues completely blocked copper-stimulated degradation but did not alter the subcellular distribution and multimerization of COPT1. Although mutation of His43 to alanine and serine retained the transporter activity in yeast cells, the mutant protein was unstable and degraded in the proteasome in Arabidopsis cells. Our results demonstrate a pivotal role for the extracellular residue His43 in high affinity copper transport activity, and suggest common molecular mechanisms for regulating both metal transport and protein stability of COPT1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histidina/genética , Histidina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas Transportadoras de Cobre/metabolismo , Cobre/química , Transportador de Cobre 1/metabolismo , Transporte Biológico , Estabilidad Proteica
18.
J Mol Med (Berl) ; 101(5): 527-542, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017692

RESUMEN

Copper (Cu) was recently demonstrated to play a critical role in cellular physiological and biochemical processes, including energy production and maintenance, antioxidation and enzymatic activity, and signal transduction. Antioxidant 1 (ATOX1), a chaperone of Cu previously named human ATX1 homologue (HAH1), has been found to play an indispensable role in maintaining cellular Cu homeostasis, antioxidative stress, and transcriptional regulation. In the past decade, it has also been found to be involved in a variety of diseases, including numerous neurodegenerative diseases, cancers, and metabolic diseases. Recently, increasing evidence has revealed that ATOX1 is involved in the regulation of cell migration, proliferation, autophagy, DNA damage repair (DDR), and death, as well as in organism development and reproduction. This review summarizes recent advances in the research on the diverse physiological and cytological functions of ATOX1 and the underlying mechanisms of its action in human health and diseases. The potential of ATOX1 as a therapeutic target is also discussed. This review aims to pose unanswered questions related to ATOX1 biology and explore the potential use of ATOX1 as a therapeutic target.


Asunto(s)
Proteínas de Transporte de Catión , Cobre , Humanos , Cobre/química , Cobre/metabolismo , Antioxidantes/uso terapéutico , Metalochaperonas/química , Metalochaperonas/genética , Metalochaperonas/metabolismo , Proteínas Transportadoras de Cobre , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Chaperonas Moleculares/genética
19.
Metallomics ; 15(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36822629

RESUMEN

Copper is involved in many physiological pathways and important biological processes as a cofactor of several copper-dependent enzymes. Given the requirement for copper and its potential toxicity, intracellular copper levels are tightly controlled. Disturbances of human copper homeostasis are characterized by disorders of copper overload (Wilson's disease) or copper deficiency (Menkes disease). The maintenance of cellular copper levels involves numerous copper transporters and copper chaperones. Recently, accumulating evidence has revealed that components of the ubiquitin proteasome system (UPS) participate in the posttranslational regulation of these proteins, suggesting that they might play a role in maintaining copper homeostasis. Cellular copper levels could also affect the activity of the UPS, indicating that copper homeostasis and the UPS are interdependent. Copper homeostasis and the UPS are essential to the integrity of normal brain function and while separate links between neurodegenerative diseases and UPS inhibition/copper dyshomeostasis have been extensively reported, there is growing evidence that these two networks might contribute synergistically to the occurrence of neurodegenerative diseases. Here, we review the role of copper and the UPS in the development of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, and discuss the genetic interactions between copper transporters/chaperones and components of the UPS.


Asunto(s)
Enfermedades Neurodegenerativas , Complejo de la Endopetidasa Proteasomal , Humanos , Ubiquitina/metabolismo , Cobre/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Homeostasis , Proteínas Transportadoras de Cobre
20.
Mamm Genome ; 34(1): 1-11, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36462057

RESUMEN

Wilson disease (WD), a copper metabolism disorder caused by mutations in ATP7B, manifests heterogeneous clinical features. Interestingly, in a fraction of clinically diagnosed WD patients, mutations in ATP7B appears to be missing. In this review we discuss the plausible explanations of this missing heritability and propose a workflow that can identify the hidden mutations. Mutation analyses of WD generally includes targeted sequencing of ATP7B exons, exon-intron boundaries, and rarely, the proximal promoter region. We propose that variants in the distal cis-regulatory elements and/or deep intronic variants that impact splicing might well represent the hidden mutations. Heterozygous del/ins that remain refractory to conventional PCR-sequencing method may also represent such mutations. In this review, we also hypothesize that mutations in the key copper metabolism genes, like, ATOX1, COMMD1, and SLC31A1, could possibly lead to a WD-like phenotype. In fact, WD does present overlapping symptoms with other rare genetic disorders; hence, the possibility of a misdiagnosis and thus adding to missing heritability cannot be excluded. In this regard, it seems that whole-genome analysis will provide a comprehensive and rapid molecular diagnosis of WD. However, considering the associated cost for such a strategy, we propose an alternative customized screening schema of WD which include targeted sequencing of ATP7B locus as well as other key copper metabolism genes. Success of such a schema has been tested in a pilot study.


Asunto(s)
Proteínas de Transporte de Catión , Degeneración Hepatolenticular , Humanos , Degeneración Hepatolenticular/diagnóstico , Degeneración Hepatolenticular/genética , Cobre/metabolismo , Proyectos Piloto , Proteínas de Transporte de Catión/genética , Mutación , Proteínas Transportadoras de Cobre/genética , Chaperonas Moleculares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...